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Hyperbolic 3-manifolds can be constructed by taking
the complement of a knot (or link) K 1n the 3-
sphere. They can also can be made by gluing together
polyhedra. For example, the figure 8 knot

Hyperbolic geometry 1s type of geometry in which
Fuclid’s parallel postulate does not hold. Given a line and
a point, there are infinitely many lines through the point

which are parallel to the given line.

complement can be constructed from 2 1ideal
p

A torus can be obtained by identifying the sides of a tetrahedra by gluing according to the arrows shown.

square, and therefore has a Fuclidean geometry. Similatly,

the genus 2 surface can be obtained by identifying pairs of [Image: William Thurston, Geoetry and 1 opolagy of 3-Manifolds]

stdes of a hyperbolic octagon, and therefore has a

hyperbolic geometry. In fact, all surfaces of genus greater ‘oo S
' ' naplPea

than or equal to 2 can be given a hyperbolic geometry.

- g We can also construct the genus 2 surface from 2 “pairs of
‘ ‘@ pants”’, each of which 1s equivalent to 2 right-angled hexagons.
By adjusting the lengths of alternating sides and changing the
’a  —— number of twists when joining the components together, we

“K‘_\/ Q/ = can generate 6 different hyperbolic metrics for the surface.
m. More generally, the Teichmiller space of a genus g surface
<k contains the different types of metrics and has dimension 6g-6.

l

This corresponds to the different tessellations of the
g ‘ hyperbolic disc by the fundamental 4g-gon.

The Fundamental Group
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e o & b SnapPea is a computer program used to study

hyperbolic 3-manifolds and their properties. These
images have been created using SnapPy, a version

of SnapPea which uses Python.

The image below shows the cusp neighbourhood
ot the figure 8 knot complement. We can
construct it by considering what happens to the
vertices of the 2 ideal tetrahedra when they are

olued together as described above. By matching up
the Os and 1s in the picture, we see that the vertex
1S a cone on a torus.
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